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The theory of belief functions is widely used for data from

multiple sources. Different evidence combination rules have been

proposed in this framework according to the properties of the

sources to combine. However, most of these combination rules are

not efficient when there are a large number of sources. This is due to

either the complexity or the existence of an absorbing element such

as the total conflict mass function for the conjunctive based rules

when applied on unreliable evidence. In this paper, based on the

assumption that the majority of sources are reliable, a combination

rule for a large number of sources is proposed using a simple idea:

the more common ideas the sources share, the more reliable these

sources are supposed to be. This rule is adaptable for aggregating a

large number of sources which may not all be reliable. It will keep

the spirit of the conjunctive rule to reinforce the belief on the focal

elements with which the sources are in agreement. The mass on the

empty set will be kept as an indicator of the conflict.

The proposed rule, called LNS-CR (Conjunctive combination

Rule for a Large Number of Sources), is evaluated on synthetic

mass functions. The experimental results verify that the rule can be

effectively used to combine a large number of mass functions and

to elicit the major opinion.
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I. INTRODUCTION

In recent years, Dempster-Shafer Theory (DST),

also called the theory of belief functions, has gained

increasing attention in the scientific community as it

allows to the deal with the imprecise and uncertain in-

formation. It has been applied in various domains, such

as data classification [2, 3], data clustering [4, 5], so-

cial network analysis [6], etc. In complex environment,

multiple stake-holders attempt to reach a decision by

combining several sources of information and aggre-

gating their points of view by stressing common agree-

ment. The theory of belief functions, which has pro-

vided many rules to combine information represented

by mass functions [7], are widely used for decision

making. In real applications, there are usually a large

number of sources. Most of the existing combination

rules are not applicable in this case, and cannot be used

to find the major opinion from many participants.

One of the most famous combination rule in belief

function framework is the Dempster’s rule [7]. Smets

[8] proposed a modification of Dempster’s rule, often

called “conjunctive rule,” where the empty set can be

assigned with a non-null mass under the Transferable

Belief Model (TBM) [9]. In fact, the conjunctive rule is

equivalent to the Dempster rule without the normaliza-

tion process. It has a fast and clear convergence towards

a solution. But this rule has a strong assumption that all

the sources are reliable. In real applications, it is dif-

ficult to be either satisfied or verified. Moreover, the

more sources there are, the more chance that there is

some unreliable evidence.

Smets [8] reasoned that the mass on the empty set

can play the role of alarm. When the global conflict

(the mass assigned to the empty set) is high, it indicates

that there is strong disagreement among the sources of

mass functions to combine. However, as observed in

[10, 11, 12], the mass on the empty set is not sufficient

to exactly describe the conflict since it includes an

amount of auto-conflict [13]. Sometimes when there

is only a small amount of concordant evidence, the

total conflict mass function, i.e. m(Ø) = 1 will be an

absorbing element. Consequently, when combining a

large number of (incompatible) mass functions using

the conjunctive rule, the global conflict may tend to 1.

This makes it impossible to reveal the cause of high

global conflict. We do not know whether it is due to the

sources to fuse or caused by the absorption power of the

empty set [10, 14]. In other words, even the combined

mass function by the conjunctive rule is m(Ø)¼ 1, the
proposition that the sources are highly conflicting may

be incorrect.

In order to rectify the drawbacks of the classical

Dempster’s rule and Smets’ conjunctive rule, many ap-

proaches have been made through the modification of

the combination rule. Some authors tried to find alter-

native repartitions of the conflict. A plethora of com-

bination rules have been brought forward in this way.
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For example, Yager [15] and Dubois and Prade [16]

suggested assigning the highly conflicting mass to the

whole set or a particular set. The Proportional Conflict

Redistribution (PCR) rule, which can distribute the par-

tial conflicts among the involved focal elements rather

than to their union, is developed in [13, 17]. Apart from

these approaches working directly on the combination

rule, some studies manage the conflict through evidence

discounting, where the reliability of sources is automat-

ically and adaptively taken into account [10, 16, 18, 19].

Most of the existing combination rules are not effi-

cient when applied on a large number of sources due

to the ineffective way to handle conflict or the high

complexity of the computation. Orponen [20] proved

that the complexity of the conjunctive rule is NP-hard,

but the complexity depends on the way to program the

belief functions [21]. Some rules can manage efficiently

the conflict but have large complexity [13, 16, 22, 23],

making them infeasible when applied to combine a large

number of mass functions.

In this paper, a conjunctive-based combination rule,

named LNS-CR (Large Number of Sources), is pro-

posed to aggregate a large number of mass functions.

Our perspective on belief function combination is that

combining mass functions from different sources is sim-

ilar to combining opinions from multiple stake-holders

in group decision-making [24], i.e. the more one’s opin-

ion is consistent with the other experts, the more reliable

the source is. We assume that all the mass functions

available are separable mass functions, which means

they can be expressed by a group of simple support mass

functions. In many applications, the mass assignments

are directly in the form of Simple Support Functions

(SSF) [25]. The advantage of SSFs is that we can group

the mass functions in such a way that sources in the

same group share the same viewpoint. Mass functions

in each small group are first fused and then discounted

according to the proportions. After that the number of

mass functions participating the next global combina-

tion process is independent of the number of sources,

but only depends on the number of classes. As a re-

sult, the problem brought by the absorbing element (the

empty set) using the conjunctive rule can be avoided.

Moreover, an approximation method when the number

of mass functions is large enough is presented. The main

contributions of this paper are as follows:

² A new conjunctive-based combination rule, named

LNS-CR rule, is brought froward. The property to

reinforce the belief on the focal elements with which

most of the sources agree is preserved in the proposed

rule;

² The assumption of the LNS-CR rule on the reliability
of the sources is more relaxed, as it does not require

all the sources are reliable, but only at least half of

them are reliable.

² LNS-CR can be used to combine mass functions from
a large number of sources, especially can be used to

elicit the major opinion;

² Derivation that the LNS-CR rule is within acceptable
complexity.

The rest of this paper is organized as follows. In Sec-

tion 2, some basic knowledge of belief function theory

is briefly introduced. The proposed evidence combina-

tion approach is presented in detail in Section 3. Numer-

ical examples are employed to compare different combi-

nation rules and show the effectiveness of LNS-CR rule

in Section 4. Finally, Section 5 concludes the paper.

II. BACKGROUND

A. Basic knowledge of belief function theory

Let £ = fμ1,μ2, : : : ,μng be the discernment frame. A
mass function is defined on the power set 2£ = fA : Aμ
£g. The mass function m : 2£! [0,1] is said to be a

Basic Belief Assignment (bba) on 2£, if it satisfies:X
Aμ£

m(A) = 1: (1)

Every A 2 2£ such that m(A)> 0 is called a focal

element, and the set of focal elements is denoted

by F . In a practical way of programming, the ele-
ment of 2£ can be arranged by natural order [26]:

μ1,μ2,fμ1,μ2g,μ3, : : : ,fμ1,μ2,μ3g,μ4, : : : ,£.
The frame of discernment can also be a focal ele-

ment. If £ is a focal element, the mass function is called

non-dogmatic. The mass assigned to the frame of dis-

cernment, m(£), is interpreted as a degree of ignorance.

In the case of total ignorance, m(£) = 1. This type of

mass assignment is vacuous. If there is only one focal

element, i.e. m(A) = 1, A½£, the mass function is cat-
egorical. Another special case of assignment is named

consonant mass functions, where the focal elements in-

clude each other as a subset, i.e. if A,B 2 F , A½ B or
B ½ A.
The credibility and plausibility functions are derived

from a bba m as in Eqs. (2) and (3):

Bel(A) =
X

BμA,B 6=Ø
m(B), 8Aμ£, (2)

Pl(A) =
X

B\A6=Ø
m(B), 8Aμ£: (3)

Each quantity Bel(A) measures the minimal belief on

A justified by available information on B(B μ A), while
Pl(A) is the maximal belief on A justified by information

on B which are not contradictory with A (A\B 6=
Ø). The commonality function q and the implicability

function b are defined respectively as

q(A) =
X
AμB

m(B), 8Aμ£ (4)
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and
b(A) = Bel(A) +m(Ø), 8Aμ£: (5)

A bba m can be recovered from any of these functions.

For instance,

m(A) =
X
B¶A
(¡1)jBj¡jAjq(B), 8Aμ£ (6)

and
m(A) =

X
BμA
(¡1)jAj¡jBjb(B), 8Aμ£: (7)

Belief functions can be transformed into a probabil-

ity function by Smets’ method [27], where each mass

of belief m(A) is equally distributed among the elements

of A. This leads to the concept of pignistic probability,

BetP. For all μi 2£, we have

BetP(μi) =
X

Aμ£jμi2A

m(A)

jAj(1¡m(Ø)) , (8)

where jAj is the cardinality of set A (number of elements
of £ in A). Pignistic probabilities can help make a

decision.

B. Consistency of mass assignments

The consistency between two bbas can be defined

in two different ways. Suppose the sets of focal ele-

ments for m1 and m2 are F1 and F2 respectively. Mass
functions m1 and m2 are called strong consistent if and

only if
\E2fF1[F2g 6=Ø: (9)

Meanwhile, bbas m1 and m2 are called weak consistent

if and only if

8A 2 F1, B 2 F2, A\B 6=Ø: (10)

Strong consistent evidence means that there is at

least one element that is common to all subsets [28].

It is easy to see that, when m1 and m2 are strong

consistent, they are sure to be weak consistent. This is

the definition of consistency between belief functions.

The inconsistency within an individual mass assignment

can be defined similarly [12].

C. Reliability-based discounting

When the sources of evidence are not completely

reliable, the discounting operation proposed by Shafer

[25] and justified by Smets [29] could be applied.

Denote the reliability degree of mass function m by ® 2
[0,1], then the discounting operation can be defined as:

m0(A) =
½

®£m(A) 8A½£,
1¡®+®£m(£) if A=£:

(11)

If ®= 1, the evidence is completely reliable and the bba

will remain unchanged. On the contrary, if ®= 0, the

evidence is completely unreliable. In this case the so-

called vacuous belief function, m(£) = 1, could be got.

It describes the total ignorance.

Before evoking the discounting process, the relia-

bility of each sources should be known. One possible

way to estimate the reliability is to use confusion ma-

trices [30]. Generally, the goal of discounting is to re-

duce global conflict before combination. One can as-

sume that the conflict comes from the unreliability of

the sources. Therefore, the source reliability estimation

is to some extent linked to the estimation of conflict

between sources.

Hence, Martin et al. [10] proposed to use a conflict

measure to evaluate the relative reliability of experts.

Once the degree of conflict is computed, the relative

reliability of the source can be computed accordingly.

Suppose there are S sources, S = fs1,s2, : : : ,sSg, the
reliability discounting factor ®j of source sj can be

defined as follows:

®j = f(Conf(sj ,S)), (12)

where Conf(sj ,S) quantifies the degree that source sj
conflicts with the other sources in S, and f is a de-
creasing function. The following function is suggested

by the authors:

®j = (1¡Conf(sj ,S)¸)1=¸, (13)

where ¸ > 0.

In [31], the authors considered to use those two

possible conflict origins, extrinsic measure and intrinsic

measure, to estimate reliability. In their opinion, conflict

may not only come from the source’s contradiction

(extrinsic measure), but also from the confusion rate of

a source (intrinsic measure). The reliability discounting

factor, called Generic Discounting Factor (GDF), is then

suggested to be a weighted sum of the two items:

®=
k±+ l¯

k+ l
, (14)

where k > 0, l > 0 are the weight factors. In the above

equation, ± denotes the internal conflict measure of the

treated source indicating its confusion rate while ¯ is

the average distance between the treated sources si and

sj where j 2 S, j 6= i. Different intrinsic and extrinsic
conflict measures can be adopted here.

There are some other methods to estimate the relia-

bility. In [32], the authors proposed to estimate the reli-

ability of sources based on a degree of falsity. The bbas

are sequentially and incrementally discounted until the

mass assigned to the empty set is smaller than a given

threshold k. After that the discounted mass functions

can be combined using the conjunctive rule since there

is little global conflict at this time. In [33], the source re-

liability is obtained by minimizing the distance between

the pignistic probabilities computed from the discounted

beliefs and the actual value of the data. In Samet et

al. [34], the authors proposed two different versions of

generic discounting approaches: weighted GDA and ex-

ponent GDA. A new degree of disagreement is proposed

by Yang et al. [35], where the reliability discounting fac-

tor can be generated. Klein and Colot [36] viewed the
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degree of conflict as a function of discounting rates and

introduced a new criterion assessing bbas’ reliability.

These reliability estimation methods either consider the

distance (or dissimilarity) between each pair of bbas, or

the mass assigned to the empty set after the conjunc-

tive combination. However, these methods are of high

complexity and not suitable for large data applications.

D. Simple support function

Suppose m is a bba defined on the frame of discern-

ment £. If there exists a subset Aμ£ such that m could
be expressed in the following form:

m(X) =

8><>:
w X =£,

1¡w X = A,

0 otherwise:

(15)

where w 2 [0,1], then the belief function related to bba
m is called a Simple Support Function (SSF) (also called

simple mass function) [25] focused on A. Such a SSF

can be denoted by Aw(¢) where the exponent w of the
focal element A is the basic belief mass (bbm) given

to the frame of discernment £, m(£). The complement

of w to 1, i.e. 1¡w, is the bbm allocated to A [37]. If

w = 1 the mass function represents the total ignorance,

if w = 0 the mass function is a categorical bba on A.

A belief function is separable if it is a SSF or if

it is the conjunctive combination of some SSFs [38].

In the work of [38], this kind of separable masses is

called u-separable where “u” stands for “unnormalized,”

indicating the conjunctive rule is the unnormalized ver-

sion of Dempster-Shafer rule. The set of separable mass

functions is not obvious to obtain. It is easy to see con-

sonant mass functions (the focal element are nested) are

separable [39]. Smets [37] defined the Generalized Sim-

ple Support Function (GSSF) by relaxing the weight w

to [0,1). Those GSSFs with w 2 (1,1) are called In-
verse Simple Support Functions (ISSF). Smets proved

all non-dogmatic mass functions are separable if one

uses GSSFs. For any non-dogmatic belief function m0,

the canonical decomposition method proposed by Smets

is as follows. First, calculate the commonality number

for all focal elements, which is given by

Q0(X) =
X
B¶X

m0(B): (16)

Secondly for any Aμ£, calculate wA value as follows:
wA =

Y
X¶A

Q0(X)
(¡1)jXj¡jAj+1 : (17)

Then the belief function m0 can be represented by the

conjunctive combination of all the functions AwA , i.e.

m0 =°\
Aμ£

AwA , (18)

where°\ denotes the conjunctive combination rule. For

fast computation, the Fast Möbius Transform (FMT)

method [40] can be evoked.

E. Some combination rules

How to combine efficiently several bbas coming

from distinct sources is a major information fusion

problem in the belief function framework. Many rules

have been proposed for such a task. Here we just briefly

recall how some most popular rules are mathematically

defined.

When information sources are reliable, the used fu-

sion operators can be based on the conjunctive combina-

tion. If bbas mj , j = 1,2, : : : ,S describing S distinct items

of evidence on £, the included result of the conjunctive

rule [9] is defined as

mconj(X) =

Ã
°\

j=1,:::,S

mj

!
(X) =

X
Y1\¢¢¢\YS=X

SY
j=1

mj(Yj),

(19)

where mj(Yj) is the mass allocated to Yj by expert j.

To apply this rule, the sources are assumed reliable and

cognitively independent.

Another kind of conjunctive combination is Demp-

ster’s rule [41]. Assuming that mconj(Ø) 6= 1, the result
of the combination by Dempster’s rule is

mDempster(X) =

8<:
0 if X =Ø,

mconj(X)

1¡mconj(Ø)
otherwise:

(20)

The item

·
¢
=mconj(Ø) =

X
Y1\¢¢¢\YS=Ø

SY
j=1

mj(Yj)

is generally called Dempster’s degree of conflict of the

combination or the inconsistency of the combination. As

the conjunctive rule is not idempotent, mconj(Ø) includes

an amount of auto-conflict [42], and it is called global

conflict to make the difference.

The conjunctive rule can be applied only if all the

experts are reliable. In the other case, the disjunctive

rule [43], which only assumes that at least one of

the sources is reliable, can be used. The disjunctive

combination of S sources can be defined as

mdisj(X) =

Ã
°[

j=1,:::,S

mj

!
(X) =

X
Y1[¢¢¢[YS=X

SY
j=1

mj(Yj): (21)

The conjunctive and disjunctive rules can be conve-

niently expressed by means of the commonality func-

tion q (Eq. (4)) and the implacability function b (Eq. (5))

[43]. Let qi and bi be the commonality function and

implacability function respectively (associated with mi),

then the commonality function of the conjunctive com-

bination of S bbas is

qconj(A) =

SY
i=1

qi(A), 8Aμ£ (22)

A BELIEF COMBINATION RULE FOR A LARGE NUMBER OF SOURCES 25



while the implacability function of the disjunctive com-

bination of S bbas is

bdisj(A) =

SY
i=1

bi(A), 8Aμ£: (23)

Since functions m, q and b (as well as bel and pl)

are equivalent representations, the mass function m can

be recovered using the Fast Möbius Transform (FMT)

method given the functions q and b. The conversion

can be done in time proportional to n2n [44].1 For the

conjunctive combination of S sources, the S bbas should

be converted into commonality functions first. After

calculating the product of S commonality functions,

another transformation from m to q should be evoked.

Overall the total complexity is O(Sn2n+ S2n+ n2n), and

the time needed is proportional to Sn2n [44, 45].

The conflict could be redistributed on partial igno-

rance like in the Dubois and Prade rule (DP rule) [16],
which can be seen as a mixed conjunctive and disjunc-

tive rule. For all X μ£, X 6=Ø:

mDP(X) =
X

Y1\¢¢¢\YS=X

SY
j=1

mj(Yj)

+
X

Y1[¢¢¢[YS=X
Y1\¢¢¢\YS=Ø

SY
j=1

mj(Yj), (24)

where mj is the mass function delivered by expert j. In

a general case, this rule cannot be programmed with the

Fast Möbius Transform method because all the partial

conflict must be considered. If the implementation is

made like that in Ref. [46], it takes much more time

than the conjunctive rule.

Denœux [38] proposed a family of conjunctive and

disjunctive rules using triangular norms. The cautious
rule [47, 48] belongs to that family and could be used
to combine mass functions for which independence

assumption is not verified. Cautious combination of

S non-dogmatic mass functions mj , j = 1,2, : : : ,S is

defined by the bba with the following weight function:

w(A) =

Ŝ

j=1

wj(A), A 2 2£ n£: (25)

We thus have

mCautious(X) =°\
A6μ£

A

VS

j=1
wj (A), (26)

where Awj (A) is the simple support function focused on

A with weight function wj(A) issued from the canoni-

cal decomposition of mj . Note also that
V
is the min

operator. The time consumption of the cautious rule

1This is based on the assumption that the mass functions are arranged

in natural order. If not, the complexity is proportional to n22n. The

complexity analysis in this work all assumes that the bbas to be com-

bined are encoded using the natural order.

includes the canonical decomposition of non-dogmatic

mass functions and is therefore bigger than the con-

junctive rule. If this rule is implemented in Fast Möbius

Transform method, the complexity is proportional to

Sn2n.

Murphy [49] presented the average combination
rule and proposed to utilize the mean of the basic belief

assignments as the fusion of evidence. Therefore, for

each focal element X 2 2£ of S mass functions, the

combined one is defined as follows:

mAve(X) =
1

S

SX
j=1

mj(X), 8X μ£: (27)

The complexity of the average is proportional to S2n.

A family of fusion rules based on new Proportional

Conflict Redistributions (PCR) for the combination of

uncertainty and conflicting information have been de-

veloped in Dezert-Smarandache Theory (DSmT) frame-

work [50]. Among them, the fusion rule called PCR6

proposed by Martin and Osswald [13] is one of the

most popular one among the PCR rules. For the com-

bination of S > 2 sources, the fused mass is given by

mPCR6(Ø) = 0, and for X 6=Ø in 2£

mPCR6(X) =

mconj(X) +

SX
i=1

8>>>>><>>>>>:
(mi(X))

2
XTS¡1

k=1
Y¾i (k)\X´Ø

(Y¾i (1),:::,Y¾i (S¡1))2(2£)S¡1

£
Ã QS¡1

j=1 m¾i(j)(Y¾i(j))

mi(X)+
PS¡1

j=1 m¾i(j)(Y¾i(j))

!9>>>>>=>>>>>;
, (28)

where ¾i counts from 1 to S avoiding i:½
¾i(j) = j if j < i,

¾i(j) = j+1 if j ¸ i: (29)

As Yi is a focal element of expert/source i, we have

m(Yi)> 0. Then

mi(X) +

S¡1X
j=1

m¾i(j)(Y¾i(j)) 6= 0:

In Eq. (28), mconj is the conjunctive rule given by

Eq. (19). Here again, the Fast Möbius Transformmethod

to program the belief functions is not generally the best

way. If the implementation is made like that in Ref. [46],

the time consumption is very high.

III. A COMBINATION RULE FOR A LARGE NUMBER
OF MASS FUNCTIONS

The main idea of the conjunctive combination rule is

to reinforce the belief on the focal elements with which
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most of the sources agree. Martin et al. [10] showed

that the mass on the empty set, which is an absorbing

element, tends quickly to 1 with the number of sources

when combining inconsistent bbas. Consequently, when

using Dempster rule (Eq. (20)), the gap between ·

and 1 may rapidly exceed machine precision, even if

the combination is valid theoretically. In that case the

fused bba by the conjunctive rules (normalized or not)

and the pignistic probability are inefficient. Moreover,

the assumption that all the sources are reliable for the

conjunctive combination rule is difficult to reach in real

applications. The more sources there are, the less chance

that this assumption is valid.

The principle of the conjunctive rule with the rein-

forcement of belief and the role of the empty set as an

alarm are essential in the theory of belief functions. In

order to propose a rule which can be adapted to the

combination of a large number of mass functions and

keep the previous behavior, the following assumptions

are made:

² The majority of sources are reliable;
² The larger extent one source is consistent with others,
the more reliable the source is;

² The sources are cognitively independent [43].
These assumptions seem reasonable if we consider

combing mass functions as some kind of group decision

making problems. As a result, the proposed rule will

give more importance to the groups of mass functions

that are in a domain, and it is without auto-conflict

[13, 14]. In order to take into account this effect, this

rule will discount the mass functions according to the

number of sources giving bbas with the same focal

elements. The discounting factor is directly given by

the proportion of mass functions with the same focal

elements. This procedure is for the elicitation of the

majority opinion.

The simple support mass functions are considered

here. In this case, the mass functions can be grouped in

the light of their focal elements (except the frame £). To

make the rule applicable on separable mass functions,

the decomposition process should be performed to de-

compose each bba into simple support mass functions.

In most of applications, the basic belief can be defined

using separable mass functions, such as simple support

functions [2] and consonant mass functions [51, 52].

Hereafter we describe the proposed LNS-CR rule

for simple support functions, and then an approximation

calculation method of LNS-CR rule is suggested.

A. LNS-CR rule for simple support functions

Suppose that each evidence is represented by a SSF.

Then all the bbas can be divided into at most 2n groups

(where n= j£j). It is easy to see that there is no conflict
at all in each group because of consistency. The focal

elements of the SSF are singletons and £ itself. For the

combination of bbas inside each group, the conjunctive

rule can be employed directly. Then the fused bbas are

discounted according to the number of mass functions

in each group. Finally, the global combination of the

bbas of different groups is preformed also using the

conjunctive rule. Suppose that all bbas are defined

on the frame of discernment £ = fμ1,μ2, : : : ,μng, and
denoted by mj = (Ai)

wj , j = 1, : : : ,S and i= 1,2, : : : ,c,

where c· 2n. The detailed process of the combination
is listed as follows. Our proposed rule called LNS-CR

for Large Number of Sources rule is composed of the

four following steps:

1) Cluster the simple bbas into c groups based on their

focal element Ai. For the convenience, each class is

labeled by its corresponding focal element.

2) Combine the bbas in the same group. Denote the

combined bba in group Ak by SSF

m̂k = (Ak)
ŵk , k = 1,2, : : : ,c:

Let the number of bbas in group Ak is sk. If the

conjunctive rule is adopted, we have

m̂k = °\
j=1,:::,sk

mj = (Ak)

Qsk

j=1
wj : (30)

3) Reliability-based discounting. Suppose the fused bba

of all the mass functions in Ak is m̂k. At this time,

each group can be regarded as a source, and there

are c sources in total. The reliability of one source

can be estimated as compared to a group of sources.

In our opinion, the reliability of source Ak is related

to the proportion of bbas in this group. The larger

the number of bbas in group Ak is, the more reliable

Ak is. Then the reliability discounting factor of m̂k
can be defined as:

®k =
skPc
i=1 si

: (31)

In order to keep the mass function representing total

ignorance as a neutral element of the rule, in Eq. (31)

we let ak = 0 for the group with Ak =£. Another

version of the discounting can be given by a factor

taking into account the precision of the group by:

®k =
¯
´
k skPc

i=1¯
´
i si
, (32)

where

¯k =
j£j
jAkj

: (33)

Parameter ´ can be used to adjust the precision of the

combination results. The larger the value of ´ is, the

less imprecise the resulting bba is. The discounted

bba of m̂k can be denoted by SSF m̂
0
k = (Ak)

ŵ0
k with

ŵ0k = 1¡®k +®kŵk. As we can see, when the number
of bbas in one group is larger, ® is closer to 1. That is

to say, the fused mass in this group is more reliable.
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4) Global combine the fused bbas in different groups

using the conjunctive rule:

mLNS-CR = °\
k=1,:::,c

m̂0k = °\
k=1,:::,c

(Ak)
ŵ0
k : (34)

REMARKS

² The reliability estimation method proposed here is
very simple compared with the previous mentioned

methods in Section II-C, where usually the distance

between bbas should be calculated or a special learn-

ing process is required. In the LNS-CR rule, to eval-

uate the reliability discounting factor, we only need

to count the number of SSFs in each group. Note that

other reliability estimation methods can also be used

here.

² In the last step of combination, as the number of mass
functions that take part in the global combination is

small (at most 2n), other combination rules such as

DP rule and PCR rules are also possible in practice

instead of Eq. (34).

B. LNSa-CR rule for the approximated combination

If there is a large number of mass functions in

each group, an approximation method is suggested here

to calculate the combined mass in the given group.

Suppose the mass functions in group with focal element

Ak (k = 1,2, : : : ,c) are:

mj(A) =

8><>:
1¡wj A= Ak,

wj A=£,

0 otherwise,

0· wj < 1, j = 1,2, : : : ,sk: (35)

The combination of the masses in this group using the

conjunctive rule is

m̂k(A) =

8><>:
1¡Qsk

j=1wj A= Ak,Qsk
j=1wj A=£,

0 otherwise:

(36)

It is easy to get

lim
sk!1

m̂k(A) =

8><>:
1 A= Ak,

0 A=£,

0 otherwise:

(37)

This is an illustration of the conjunctive property. After

the discounting with factor ®k, the fused bba using for

the global combination is

lim
nk!1

m̂0k(A) =

8><>:
®k A= Ak,

1¡®k A=£,

0 otherwise:

(38)

It can be represented by SSF

m̂0k = (Ak)
1¡®k , (39)

where ®k is shown in Eq. (31) or (32). If the conjunctive

rule is adopted for the global combination at step 4, the

final bba we get is

mLNSa-CR =°\ (Ak)
1¡®k : (40)

In this approximate rule for the large number of

sources, the initial mass functions is no longer consid-

ered, and the combination process of the bbas inside

each group is not required any more. This can accel-

erate the algorithm to a large extent. The LNS-CR and

LNSa-CR rule provide different results when the num-

ber of sources is small. However, when the number of

sources is large enough, they can be regarded as equiv-

alent.

C. Properties

The proposed rule is commutative, but not associa-

tive. The rule is not idempotent, but there is no absorb-

ing element. The vacuous mass function is a neutral

element of the LNS-CR rule.

There are four steps when applying LNS-CR rule2:

decomposition (not necessary for simple support mass

functions), inner-group combination, discounting and

global combination. The LNS-CR rule has the same

memory complexity as some other rules such as con-

junctive, Dempster and cautious rules if all the rules are

combined globally using FMT method. Only DP and

PCR6 rules have higher memory complexity because of

the partial conflict to manage. Suppose the number of

mass functions to combine is S, and the number of ele-

ments in the frame of discernment is n. The complexity

for decomposing3 mass functions to SSFs is O(Sn2n).

For combining the mass functions in each group, due to

the structure of the simple support mass functions, we

only need to calculate the product of the masses on only

one focal element £. Thus the complexity is O(S). The

complexity of the discounting is O(2n). In the process

of global combination, the bbas are all SSFs. If we use

the Fast Möbius Transform method, the complexity is

O(n2n). And there are at most 2n mass functions partici-

pating the following discounting and global conjunctive

combination processes. Since in most application cases

with a large number of mass functions, we have 2n¿ S,

the last two steps are not very time-consuming. The total

complexity of LNS-CR is O(Sn2n+ S+2n+ n2n) and

so is approximately equivalent to O(Sn2n).

For the approximate method, we can also save the

time for inner combination and the discounting. The

fused mass in each group is calculated by the propor-

tions, and the complexity is also O(S). Although the

approximate method does not reduce the complexity,

2The source code for LNS-CR rule can be found in R package

ibelief [53].
3In the decomposing process, the Fast Möbius Transform method is

used.
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TABLE I

The combination of six masses. For the names of columns, μij is used to denote fμi,μjg.

Conjunctive Dempster Disjunctive DP PCR6 Cautious Average LNS-CR

Ø 0.49313 0.00000 0.00000 0.00000 0.00000 0.15200 0.00000 0.06849

fμ1g 0.02595 0.05120 0.00000 0.02595 0.04783 0.00800 0.11333 0.36408

fμ2g 0.45687 0.90136 0.00000 0.45687 0.56639 0.79800 0.15833 0.08984

fμ1,μ2g 0.00000 0.00000 0.00004 0.49313 0.00000 0.00000 0.00000 0.00000

fμ3g 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

fμ1,μ3g 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

fμ2,μ3g 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

£ 0.02405 0.04744 0.99996 0.02405 0.38578 0.04200 0.72833 0.47759

in the experimental part, we will show that it will save

some running time in applications when S is quite large.

We remark here that one of the assumptions of

LNS-CR rule is that the majority of sources are reliable.

However, this condition is not always satisfied in every

applicative context. Consider here an example with two

sensor technologies: TA and TB. The system has two

TA-sensors (S1 and S2), and one TB-sensor S3. Suppose

also a parasite signal causes TA sensors to malfunction.

In this situation, the majority of sensors are unreliable.

And we could not get a good result if the LNS-CR

rule is used directly as LNS-CR(S1,S2,S3) at this time.

Actually there is an underlying hierarchy in the sources

of information, LNS-CR rule could be evoked according

to the hierarchy, such as LNS-CR(LNS-CR(S1,S2),S3).

We will study that more in the future work.

IV. EXPERIMENTS

In this section, several experiments will be con-

ducted to illustrate the behavior of the proposed combi-

nation rule LNS-CR and to compare with other classical

rules. Some different types of randomly generated mass

functions will be used. The function RandomMass in R

package ibelief [53] is adopted to generate random mass

functions [54].

EXPERIMENT 1 (Elicitation of the majority opinion). In

some applications, the elicitation of the majority opinion

is very important. In this experiment, it is assumed

that reliable sources can provide some imprecise and

uncertain information, which is assumed to be in the

form of the mass functions mj (j = 1,2, : : : ,6) over the

same discernment frame £ = fμ1,μ2,μ3g:
m1 :m1(fμ1g) = 0:12, m1(£) = 0:88,

m2 :m2(fμ1g) = 0:16, m2(£) = 0:84,

m3 :m3(fμ1g) = 0:15, m3(£) = 0:85,

m4 :m4(fμ1g) = 0:11, m4(£) = 0:89,

m5 :m5(fμ1g) = 0:14, m5(£) = 0:86,

m6 :m6(fμ2g) = 0:95, m6(£) = 0:05:

As can be seen, the first five sources share similar

belief (supporting fμ1g) whereas the sixth one delivers
a mass function strongly committed to another solution

(supporting fμ2g). These six mass functions cannot

be regarded as conflicting, because the majority of

evidence shows the preference of fμ1g. Here, source 6,
is assumed not reliable since it contradicts with all the

other sources.

The combination results by conjunctive rule, Demp-

ster rule, disjunctive rule, DP rule, PCR6 rule, cautious

rule, average rule and the proposed LNS-CR rule4 are

depicted in Table I. As can be observed, the conjunc-

tive rule assigns most of the belief to the empty set,

regarding the sources as highly conflictual. Dempster

rule, DP rule, PCR6 rule and average rule redistribute

all the global conflict to other focal elements. The dis-

junctive rule gives the total ignorance mass functions.

The cautious rule and the proposed LNS-CR rule keep

some of the conflict and redistribute the remaining. But

the belief given to fμ2g is more than that to fμ1g when
using Dempster, DP, PCR6, cautious and the average

rules, which indicates that these rules are not robust to

the unreliable evidence. The obtained fused bba by the

proposed rule assigns the largest mass to focal element

fμ1g, which is consistent with the intuition. It keeps a
certain level of global conflict, and at the same time re-

flects the superiority of fμ1g compared with fμ2g. From
the results we can see that only the LNS-CR rule can

correctly elicit the major opinion.

The LNS-CR rule is a conjunctive based combi-

nation rule for mass functions with different reliabil-

ity degrees. As mentioned before, the principle of the

LNS-CR rule is similar that of Schubert’s method [32].

Table II lists the results by Schubert’s combination

method with different values of k. As can be seen, the

result by the use of the LNS-CR rule is similar to that

by Schubert’s method with a small value of threshold

k. When k is set small, the discounting process in Schu-

bert’s method needs more steps. And in each step, the

conjunctive rule should be evoked to calculate the fal-

sity. It is more complex compared with the reliability

estimation process of the LNS-CR rule in that sense.

4As the focal elements are singletons except £, parameter ´ has no

effects on the final results when using LNS-CR rule.
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TABLE II

The combination of six masses by Schubert’s method with different

values of k.

k 0.1 0.2 0.3 0.4 0.5

Ø 0.09776 0.19471 0.28680 0.37803 0.46444

fμ1g 0.32187 0.26219 0.19350 0.12081 0.04980

fμ2g 0.13521 0.23145 0.31033 0.37979 0.43871

fμ1,μ2g 0.00000 0.00000 0.00000 0.00000 0.00000

fμ3g 0.00000 0.00000 0.00000 0.00000 0.00000

fμ1,μ3g 0.00000 0.00000 0.00000 0.00000 0.00000

fμ2,μ3g 0.00000 0.00000 0.00000 0.00000 0.00000

£ 0.44516 0.31165 0.20937 0.12137 0.04704

TABLE III

The combination of six masses by Martin’s method with different

values of ¸.

¸ 0.1 0.5 1 1.5 2

Ø 0.00000 0.00350 0.10485 0.23330 0.31956

fμ1g 0.00000 0.21206 0.34700 0.26789 0.19410

fμ2g 0.00000 0.01272 0.12719 0.23219 0.30256

fμ1,μ2g 0.00000 0.00000 0.00000 0.00000 0.00000

fμ3g 0.00000 0.00000 0.00000 0.00000 0.00000

fμ1,μ3g 0.00000 0.00000 0.00000 0.00000 0.00000

fμ2,μ3g 0.00000 0.00000 0.00000 0.00000 0.00000

£ 1.00000 0.77172 0.42096 0.26661 0.18378

We also compare with another reliability discount-

ing based combination method proposed by Martin et al.

[10]. Same as Schubert’s method, after the reliability de-

gree of each source is estimated, the bbas are discounted

following with a conjunctive combination. There is a

parameter ¸ in the method to adjust the discounting

factor. The results varying with different values of ¸

are shown in Table III. We can see this rule is similar

to LNS-CR rule when ¸ is set to be around 1. When

¸ is not well set, the results are not good. Moreover,

in this method, the distance between bbas should be

calculated first. Consequently, it increases the complex-

ity and makes the method not feasible for combining a

large number of sources.

TABLE IV

The combination results by different rules.

Schubert’s method Martin’s method LNS-CR

k = 0:2 k = 0:3 k = 0:5 k = 0:7 ¸= 0:3 ¸= 0:4 ¸= 0:6 ¸= 1

Ø 0.19949 0.29860 0.49704 0.69306 0.00248 0.10019 0.60681 0.98649 0.15060

fμ1g 0.80051 0.70140 0.50296 0.30694 0.16901 0.56713 0.38729 0.01351 0.48612

fμ2g 0.00000 0.00000 0.00000 0.00000 0.01200 0.04995 0.00360 0.00000 0.08593

£ 0.00000 0.00000 0.00000 0.00000 0.81650 0.28274 0.00230 0.00000 0.27735

TABLE V

Time elapsed for Schubert’s method with different values of k.

1 2 3 4 5 6 7 8 9

k 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

Time Elapsed (s) 46.81 21.64 13.46 9.28 6.64 4.88 3.67 2.73 1.79

EXPERIMENT 2 (The discounting mechanism). In this

experiment, we will discuss the reliability discounting

mechanism of the LNS-CR rule. Two reliability dis-

counting methods proposed by Shubert [32] and Martin

et al. [10] will be used to compare. Same as the LNS-CR

rule, after the discounting process by these two meth-

ods, the conjunctive rule is adopted to combine the new

mass functions. For simplicity, here we call the combi-

nation rule, where the Schubert’s discounting method

(or Martin’s discounting method) is first evoked and

then the conjunctive combination rule is used, “Schu-

bert’s method” (Martin’s method, correspondingly). A

set of 3 ¤ x bbas on a frame of discernment £ = fμ1,μ2g
are generated, x of them are unreliable while 2 ¤ x are
reliable. The reliable sources assign a large mass to the

singleton fμ1g. The unreliable sources assign a large
mass to the singleton fμ2g. The gain factor for sequen-
tial discounting in Schubert’s method is set to be 0.1

here. Schubert and Martin’s methods are evoked with

different values of k and ¸ respectively. Let x= 10, the

fused bbas by the use of different rules are listed in

Table IV.

From the table we can see, the behavior of Martin’s

discounting method is similar to that of LNS-CR rule

when ¸ is set around 0.4. The conjunctive combination

based on Schubert’s discounting does not give any

belief to fμ2g and £ = fμ1,μ2g at all although there are
1/3 of sources supporting fμ2g. Moreover, when k is
larger, most of the mass is assigned to the empty set

in this rule. From these results we can see that only

LNS-CR rule can give more belief on fμ1g which can
be regarded as the major opinion. The time elapsed for

Schubert’s method with different values of threshold

k is listed in Table V. The smaller the value of k is,

the more discounting steps are required in Schubert’s

method. Consequently, the time consumption becomes

larger. The running time for both LNS-CR rule and

Martin’s method is less than one second. Schubert’s

method is much more time-consuming.
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We have also tested the combination methods based

on the discounting factors proposed by Schubert [32]

and Martin et al. [10] on some simple support mass

functions with arbitrary focal elements. The results

are not shown here as we can get similar conclusions

from the results: The reliability estimation process of

these methods takes more time compared with that of

LNS-CR rule. The behavior of these two methods is

similar to that of LNS-CR rule when the parameter k

or ¸ is set to be in a fixed range. But they are much

more time-consuming compared with LNS-CR rule.

This confirms that the reliability discounting method in

LNS-CR rule is effective for the following conjunctive

combination.

EXPERIMENT 3 (The influence of parameter ´). We

test here the influence of parameter ´ in the LNS-CR

rule. Simple support mass functions are utilized in this

experiment. Suppose that the discernment frame under

consideration is £ = fμ1,μ2,μ3g. Three types of SSFs
are adopted. First s1 = 60 and s2 = 50 SSFs with focal

elements fμ1g and fμ2g respectively (the other focal
element is £) are uniformly generated, and then s3 = 50

SSFs with focal element μ23
¢
=fμ2,μ3g are generated.

The value of masses are randomly generated. Different

values of ´ (see Eq. (32)) ranging from 0 to 6 are

used to test. The mass values in the fused bba by

LNS-CR varying with ´ are displayed in Figure 1(a),

and the corresponding pignistic probabilities are shown

in Figure 1(b).

From these figures, we can see that ´ can have

some effects on the final decision. Figure 1.a shows

that with the increasing of ´, the mass assigned to

the singleton focal elements increases. On the contrary,

the mass given to the focal element whose cardinality

is bigger than one decreases. In fact parameter ´ in

LNS-CR aims at weakening the imprecise evidence

which gives only positive mass to focal elements with

high cardinality, and the exponent ´ allows to control

the degree of discounting. If ´ is larger, more weight is

given to the sources of evidence whose focal elements

are more specific, and more discount will be committed

to the imprecise evidence. As a result, in the experiment

when ´ is larger than 1.2, BetP(μ1)> BetP(μ2) (Figure
1(b)). At this time the mass functions with focal element

fμ2,μ3g make little contribution to the fusion process,
while the final decision mainly depends on the other two

types of simple support mass functions with singletons

as focal elements.

In real applications, ´ could be determined based

on specific requirement. This work is not specially

focusing on how to determine ´, thus in the following

experiment we will set ´ = 1 as default.

EXPERIMENT 4 (The principle for the global conflict).

The goal of this experiment is to show how Dempster’s

degree of conflict is dealt with by most of rules when

combining a large number of conflicting sources.

Fig. 1. Combination results for three types of SSFs using LNS-CR

rule. The mass functions are generated randomly, and LNS-CR rule

is evoked with different values of ´ ranging from 0 to 6. (a) bba.

(b) Pignistic probability.

In this experiment, the frame of discernment is set

to £ = fμ1,μ2g. Assume that there are only 2 focal
elements on each bba. One is the whole frame £, and

the other is any of the singletons (fμ1g or fμ2g). The
number of bbas which have the focal element fμ1g is
denoted by s1, while that with fμ2g is s2. We first fix the
value of s2, and let s1 = t ¤ s2, with t a positive integer.
We generate S = s1 + s2 such kind of bbas randomly,

but only withholding the bbas for which the mass value

assigned to fμ1g or fμ2g is greater than 0.5.
Four values of t are considered here: t= 1,2,3,4. If

t= 1, s1 = s2 = S=2. If t= 2, the number of mass func-

tions supporting fμ1g is two times of that supporting
fμ2g, and so on. The global conflict (mass given to the
empty set) after the combination with different values of

s2 for the four cases is displayed in Figures 2—5 respec-

tively. The mass assigned to the focal element fμ1g with
different combination approaches is shown in Figures

6—9.
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Fig. 2. The global conflict after the combination with s2 ranging

from [0,100] and s1 = s2.

Fig. 3. The global conflict after the combination with s2 ranging

from [0,100] and s1 = 2 ¤ s2.

It is intuitive that when t becomes larger, the global

conflict should be smaller and we should give more

belief to the focal element fμ1g. From Figures 2—9 we

can see that only the results by LNS-CR rule are in

accordance with this common sense. The simple average

rule assigns larger bba to fμ1g, but it does not keep
any conflict. In Figures 6—9, the mass given to fμ1g
by Dempster rule cannot be displayed when S is large

(and also for some small S), because in these cases the

global conflict is 1 and the normalization could not be

processed. As we can see, Dempster rule could not work

at all when s2 is larger than 20. Although the conjunctive

rule and cautious rule could work when combining a

larger number of mass functions, the obtained fused

mass function is m(Ø)¼ 1, which is useless for decision
in practical situations.

The results also confirm the equivalent of the

LNS-CR rule and LNSa-CR rule when the number of

sources is large, although the results provided by the

two rules are not the same when there are not many

Fig. 4. The global conflict after the combination with s2 ranging

from [0,100] and s1 = 3 ¤ s2.

Fig. 5. The global conflict after the combination with s2 ranging

from [0,100] and s1 = 4 ¤ s2.

mass functions to combine. From Figures 2—5 we can

see a kind of limit of the global conflict for the LNS-CR

rule. In fact, the mass on the empty set for this rule de-

pends on the size of the frame of discernment and more

directly on the number of groups created in the first step

of the rule. The limit value of the global conflict will

tend to 1 with the increase of the size of discernment

when considering only categorical bbas on different sin-

gletons.

EXPERIMENT 5 (The complexity). In this experiment,

the complexity of LNS-CR rule will be compared with

other combination rules in terms of time consumption.

Simple support mass functions defined on a frame of

discernment with eight elements are considered first.

The focal elements of each bba are set to be a random

subset of £ and £ itself. The time elapsed (and also

the log value of the time elapsed) with the number of

sources S varying from 10,000 to 100,000 is shown
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Fig. 6. The mass on fμ1g after the combination with s2 ranging
from [0,100] and s1 = s2.

Fig. 7. The mass on fμ1g after the combination with s2 ranging
from [0,100] and s1 = 2 ¤ s2.

in Figure 10.5 We can see that the running time of

LNS-CR is much smaller than that of the conjunctive

rule. LNSa-CR rule takes almost the same time as

cautious rule. Average rule is the best among the five

rules. As S increases, the application of LNSa-CR rule

can save more time compared with the use of LNS-CR

rule. The increment of time consumption with respect

to S is moderate. This tends to show that LNS-CR

rule is suitable for combining a large number of SSFs.

Remark that the decomposition process is not required

when the cautious rule or LNS-CR(a) rule is adopted

for combining SSFs.

As mentioned before, for the combination of general

separable mass functions (not SSFs), LNS-CR needs

four steps: decomposition, inner-group combination,

discounting and global combination. The difference be-

tween the combination of any kind of separable bbas

5The result of Dempster rule is the same as that of conjunctive rule.

Fig. 8. The mass on fμ1g after the combination with s2 ranging
from [0,100] and s1 = 3 ¤ s2.

Fig. 9. The mass on fμ1g after the combination with s2 ranging
from [0,100] and s1 = 4 ¤ s2.

and of SSFs is the decomposition process, which is

not necessary for the latter. We have designed another

experiment on consonant bbas6 over a frame of dis-

cernment with eight elements, and the number of focal

elements is set to 5. The focal elements are randomly

set to five nested subsets of £, and the mass values are

generated uniformly. The average running time (and the

log value of the running time) of 10 trials by the use

of different combination rules with different number

of sources S is displayed in Figure 11(a) (and Figure

11(b)).7 In order to show the complexity of LNS-CR

rule more clearly, the elapsed time in each of the four

steps is shown in Figure 12.

As we can see from these figures, the time consump-

tion of LNS-CR is significantly smaller than the cau-

6All consonant bbas are separable.
7The result of cautious rule is not displayed for large S, as it has been

already shown that cautious rule is significantly worse than the other

rules in terms of time consumption when S is small.
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Fig. 10. Time lapse for combining SSFs. (a) Time lapse by five

different rules. (b) The log value of Time lapse by five different

rules.

tious rule, but a little worse than the conjunctive rule

and the average rule. Although the complexity of cau-

tious rule is the same as LNS-CR rule and both of them

require a decomposition process, it takes more running

time than LNS-CR rule. The reason may be the differ-

ent combination approach for the mass functions in the

same group. The complexity of that process by cautious

rule is O(S2n) (The calculation is to find the minimum

of each row in a S£ 2n matrix), while for LNS-CR is
O(S). LNSa-CR is faster than LNS-CR when S is large.

Figure 12 shows that the most time-consuming step in

LNS-CR rule is the decomposition. Moreover as S in-

creases, the increase of time lapse for the inner-group

combination, discount, and global combination is lim-

ited. This is compliant with the complexity analysis of

each step for LNS-CR rule in Section III-C. In many ap-

plications the mass functions are directly SSFs in which

case there is no need to perform the decomposition, and

LNS-CR is the best choice to fuse a large number of

bbas.

Fig. 11. Time lapse for combining consonant bbas. (a) Time lapse

by five different rules. (b) The log value of Time lapse by five

different rules.

V. PERSPECTIVE ON APPLICATIONS

Pattern recognition is a class of problems where the

theory of belief functions has proved to allow increased

performances [2]. In such problems we can be facing

many bbas to combine. Denœux [2] proposed Evidential

KNN method (EKNN) as an extension of KNN in the

framework of the theory of belief functions to better

model the uncertainty in neighbor point interactions.

The Dempster rule is adopted to combine the mass

evidence from K neighbors in EKNN.

The problem considered here is to classify an input

pattern x into n categories or classes, denoted by £ =

fμ1,μ2, : : : ,μng. The available information is assumed to
consist of a training set L= f(x(1),μ(1)), (x(2),μ(2)), : : : ,
(x(N),μ(N))g of N patterns x(i) i= 1,2, : : : ,N with known

class labels μ(i) 2£. To classify pattern x, each pair
(x(i),μ(i)) constitutes a distinct item of evidence regard-

ing the class membership of x. If the K nearest neigh-

bors according to the distance measure are considered,

K items of evidence can be obtained. These bbas can
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Fig. 12. Time lapse of each step using LNS combination rule with

S varying from 10,000 to 100,000.

Fig. 13. A small data set.

be constructed according to a relevant metric between

pattern x and its jth neighbor x(i)

mi(fμqg) = ®Á(d(i)),
mi(£) = 1¡®Á(d(i)),
mi(A) = 0 8A 2 2£ n ffμqg,£g, (41)

where d(i) is the (Euclidean) distance between x and

its jth neighbor x(i) with class label μ(i) = μq, ® is a

discounting parameter and Á(¢) is a decreasing function
on R+ defined as

Á(d(i)) = exp(¡°q(d(i))2) (42)

with °q being a positive parameter associated to class

μq. It can be heuristically set to the inverse of the mean
Euclidean distance between training data belonging to

class μq. In EKNN, the K bbas for each neighbor are

aggregated using the Dempster rule to form a resulting

bba. A decision has to be made regarding the assign-

ment of sample x to one individual class. The maxi-

Fig. 14. Pignistic probability.

TABLE VI

The fused bba by different combination rules (K = 4).

Conjunctive Dempster Cautious Average LNS-CR

Ø 0.2009 0.0000 0.1473 0.0000 0.0377

fμ1g 0.6771 0.8473 0.7307 0.2195 0.1818

fμ2g 0.0279 0.0349 0.0205 0.0606 0.1339

£ 0.0941 0.1177 0.1015 0.7199 0.6466

TABLE VII

The fused bba by different combination rules (K = 5).

Conjunctive Dempster Cautious Average LNS-CR

Ø 0.2198 0.0000 0.1473 0.0000 0.0352

fμ1g 0.6582 0.8436 0.7307 0.1756 0.1404

fμ2g 0.0305 0.0391 0.0205 0.0541 0.1651

£ 0.0915 0.1172 0.1015 0.7703 0.6593

mum of pignistic probability can be used for decision-

making.

A. A small data set with noisy training sample

Figure 13 illustrates a simple two-class (red circle

and green triangle) data set, where there are seven

objects in each class. The pattern x marked by blue

star is the sample data to be classified. The K bbas

using the distance to its neighbor could be constructed

by Eq. (41), and the five nearest neighbors are denoted

by Ni orderly in the figure. Set ®= 0:95 and °i is the

inverse of the average distance between the points in

class μi, i= 1,2. The fused mass function by different
combination rules with K = 4 and K = 5 are listed in

Table VI and VII respectively.

As we can see from Figure 13, pattern x is closer
to class μ2. Among pattern xs five nearest neighbor Nj ,
j = 1,2, : : : ,5, four belong to class μ2 while only 1 to
class μ1. The real class of object N1 is μ1, but it is
located in the boundary of the class and far from the

other data points in the class. It may be a noisy item
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Fig. 15. Classification results with different values of K on UCI

data set. In the figure, the legend “Iris-DS” means it is the

classification rates on Iris data set using DS combination rule. Same

as the other legends.

of μ1. The standard KNN rule can correctly classify

object x to μ2 when K > 3. However, if the evidential
KNN model is applied, due to the existence of a such

neighbor, the behavior of the combination rules has

been affected. From Table VI we can see, when K = 4,

the fused bbas by all combination rules all assign more

mass to μ1 than to μ2. Consequently, pattern x will be
classified into class μ1 if the pignistic probability is
considered for making decision. The same phenomenon

also occurs when K is smaller than 4 (see Figure 14).

When K = 5 (Table VII), only the LNS-CR rule could

partition pattern x into class μ2, which seems more
reasonable. The pignistic probabilities (Figure 14) by

the Dempster, conjunctive, cautious and average rules

for class μ1 are significantly higher than those for class
μ2, even when K is large. These rules are not robust

to the noisy training data. Pattern x could be correctly
classified to μ2 by LNS-CR rule when K is between 5

and 10.

It is indicated that when there are some noisy data in

the training data set, the performance of the combina-

tion rule may become worse with small K. We should

increase K moderately to improve the performance of

the classifier. But as we analyzed before, the existing

combination rules do not work well for aggregating a

large number of mass functions. This is a limit of the

use of evidential classifier.

B. Real data sets

In this section, we consider some well known real

data sets from the UCI repository8 summarized in Table

VIII. The classification rates by using different com-

bination rules in evidential KNN model are displayed

in Figure 15. Note that the “leave-one-out” method is

adopted here to test the classifier.

8http://archive.ics.uci.edu/ml/datasets.html.

Fig. 16. Classification rates on Digits data set.

TABLE VIII

A summary of UCI data sets.

Data set No. of objects No. of cluster No. of attributes

Iris 150 3 4

Yeast 1484 10 8

Digits 5620 10 64

As we can see from Figure 15, for all the three data

sets, the performance is almost the same for the two

combination rules, LNS-CR and DS, in terms of clas-

sification rates. But there is a little improvement by the

use of LNS-CR rule when K is large. To make it clear,

we specially depict the results on Digits data set in Fig-

ure 16. It is shown that when K > 12, the classification

rates by the use LNS-CR rule are a little larger than

those through DS rule. We show the mass given to the

empty set (global conflict) after the combination using

conjunctive rule and LNS-CR rule with different values

of K in Figure 17. The y-axis is the maximal assignment

to Ø among all the mass functions for the test data.

As we can see, the global conflict tends to 1 quickly

as K increases, while LNS-CR rule keeps a moderate

degree of global conflict. As DS rule is a normalized

conjunctive rule, there is not sense to normalize a mass

assignment with high global conflict.

C. Perspective

The above two examples are just two perspectives on

the application of LNS-CR rule. In the first example,

there are some special noisy data in the training data

set. At this time, the sources should not be considered

with equal reliability. In this situation, using the DS rule

or the conjunctive rule in EKNN model could not get

good results. In the second example, it is shown that the

global conflict may tend to one quickly as K increases.

Sometimes we even could not do the normalization

process for DS rule because of the machine precision.
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Fig. 17. Global conflict using conjunctive rule and LNS-CR rule

varying with different values of K. In the figure, the legend

“Iris-DS” means it is the conflict on Iris data set using DS

combination rule. Same as the other legends.

In real world social networks, the available infor-

mation can be uncertain, or even noisy. At this time,

if we want to do a classification task such as for rec-

ommendation, the conjunctive rule could not be applied

as the sources are not all reliable. Even if the sources

are reliable, the global conflict may tend to 1 quickly if

the bbas are not consistent. At this time, LNS-CR rule

can be an alternative choice. In the future work, we will

study how Dempster’s degree of conflict is distributed

in the feature space, and to study what special informa-

tion contained in the moderate degree of global conflict

kept by LNS-CR rule.

VI. CONCLUSION

Uncertainty in big data applications has attracted

more and more attention. The theory of belief functions

is one of the uncertainty theories allowing a model to

deal with imprecise and uncertain information. This

theory is also well designed for information fusion.

However, despite that a lot of combination rules have

been proposed in recent years in this framework, they

are not able to combine a large number of sources

because of the complexity or the absorbing element.

In this paper, a new combination rule, named

LNS-CR rule, preserving the principle of the conjunc-

tive rule is proposed. This rule considers the mass func-

tions given by the sources and groups them according to

their set of focal elements (without auto-conflict). The

mass functions of each group can be summarized by

one mass function after combination. The reliability of

the source is estimated by the proportion of bbas in one

group. Therefore, after discounting the mass function

of each group by the reliability factor, the final com-

bination can be proceeded by the conjunctive rule (or

another rule according to the application). If the number

of sources in each group is high enough, an approxima-

tion method is presented.

The LNS-CR rule is able to combine a large number

of sources. The only existing method allowing to com-

bine a large number of mass functions is the average

rule. However, that rule may give more importance to

few sources with a high belief (even if the source is

not reliable) and cannot capture the conflict between

the sources. The proposed rule with a reasonable com-

plexity (lower than the DP and PCR6 rules) can provide

good combination results.

Overall, this work provides a perspective for the

application of belief functions on big data. We will study

how to apply LNS-CR rule on the problems of social

network and crowdsourcing in the future research work.
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